If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+4w-130=0
a = 1; b = 4; c = -130;
Δ = b2-4ac
Δ = 42-4·1·(-130)
Δ = 536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{536}=\sqrt{4*134}=\sqrt{4}*\sqrt{134}=2\sqrt{134}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{134}}{2*1}=\frac{-4-2\sqrt{134}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{134}}{2*1}=\frac{-4+2\sqrt{134}}{2} $
| -8=12-4t | | 130=w^2*4w | | 15=(30y)/(12+y) | | 22+5(x-3)=57 | | 15=(30y/12+y) | | 5y-8=2(3y+5) | | -5x^2+10x+1=6 | | 0.02X+0.02=x | | -3x-15+9x-x=5-5+16 | | e-9=-20 | | 66=9x+6 | | 9x+6=66 | | 5e+21=-4 | | (x)(.58)=35.5 | | 5t-13=27 | | 5w-30=45 | | 8n-40=56 | | 75c=1/4 | | 0.2x=0.4*0.3 | | 4x-4=3x=3.5 | | 8x+25=50+3x | | y/4+8=29 | | 3x-1+4x+1+3x=90 | | 4x2+12x-13=0 | | 60x+20=8 | | x(5,75+9,25)+2,5=122,5 | | 7,5x+25=400 | | 125x+80€=1980€ | | 4n-2=-13 | | -2v2-v+12=-3v2+6v | | 10x-4(-10x/4-6/4)=-6 | | |5x-18|=-3x-2 |